If it's not what You are looking for type in the equation solver your own equation and let us solve it.
40a^2-64=0
a = 40; b = 0; c = -64;
Δ = b2-4ac
Δ = 02-4·40·(-64)
Δ = 10240
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{10240}=\sqrt{1024*10}=\sqrt{1024}*\sqrt{10}=32\sqrt{10}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-32\sqrt{10}}{2*40}=\frac{0-32\sqrt{10}}{80} =-\frac{32\sqrt{10}}{80} =-\frac{2\sqrt{10}}{5} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+32\sqrt{10}}{2*40}=\frac{0+32\sqrt{10}}{80} =\frac{32\sqrt{10}}{80} =\frac{2\sqrt{10}}{5} $
| -1-x/2x=3 | | 25x+1=3 | | 0.12(y-9)+0.10y=0.02y-2.7 | | 3s19=-6 | | -3n+6-6=-9 | | -4(2y-4)-y=-3(y-5) | | 7(x-5)/4=3 | | 4x-7x^2=4+3x | | 85x=60 | | -23(16-y)=-52 | | X^-3x-40=0 | | 25x-1=5 | | Y=-3.0x+4.2 | | 2/5(x-2)=16 | | 5(x−2)=16 | | 79=29x+101 | | 3(x+10)=-60 | | (7x-3)/10=(x+10)/4-1 | | 10.5(x+16)=84.00 | | -2b-7=-7b-22 | | 4/5y-1=9- | | 180=101+(x+29) | | 3x-6x+2=x-9+1 | | -3x-6x+2=x-9+11 | | 8x-3=92 | | (x+1)/4=8 | | 3(5x+8)=-23+32 | | 8t-3=92 | | 3(2x+6)=-46+52 | | -2/9x-4=2/18 | | −85=b÷4-2 | | X-18+1/2x+9+3x-81=180 |